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An Improved Transmission Matrix
Formulation of Cascaded Discontinuities

and its Application to E-Plane Circuits

RAAFAT R. MANSOUR, STUDENT MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract — We study the effect of the relative coswergence problem on

the transmission matrix forrmdation of cascaded diseontinuities. A numer-

ically efficient modified formulation satisfying the edge condition is pre-

sented. Application is in the analysis of wavegniding strictures in which a

nnmber of conductors are placed on various interfaces. Numericaf results

are presented for donble-ridged waveguides and fisdines. Applications to

E-plane filters are also discussed.

I. INTRODUCTION

T HE MODAL ANALYSIS TECHNIQUE has been

frequently used in solving waveguide junction scatter-

ing problems. The technique provides a formally exact

solution with matrices of infinite size which must be

truncated for numerical computation. It has been shown,

however, in [1] that improper choice of the ratio between

the number of modal terms retained in the guides forming

the junction may lead to violation of the edge condition,

which in turn leads to the relative convergence problem.

On the other hand, convergence of the modal analysis

solutions of some waveguide discontinuities has been

studied in [2]–[4], where it is shown that as long as the

number of modes used is large, the relative convergence

problem does not affect the numerical solution signifi-

cantly.

In this paper, we will show that the situation is different

when we deal with discontinuities in cascade; the effect of

the relative convergence on the numerical solution is

noticeable and can be considered critical in some cases.

In a recent publication [5], it has been demonstrated

that the transmission matrix representation of waveguide

discontinuities is superior to the scattering matrix repre-

sentation as far as the CPU time is concerned. It has,

however, been stated that the transmission matrix formula-

tion requires an equal number of modes to be retained in

any of the guides forming the discontinuity y. For some
waveguide discontinuities, this requirement may violate the

edge condition, resulting in incorrect numerical solutions.

We present a modified transmission matrix formulation

with which the relative convergence problem can be
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Fig. 1. An N-furcated cascaded waveguide discontinuity.

avoided. This formulation is quite general and has a wide

range of applications. To illustrate its applicability and to

establish the accuracy of the numerical solution, which is

the main emphasis in this paper, this formulation is em-

ployed with a transverse resonance concept to provide

accurate and numerically efficient solutions for the propa-

gation characteristics of double-ridged waveguides and

finlines. We also show how this formulation can be adopted

to provide an efficient analysis for metal-insert E-plane

filters.

H. CASCADED DISCONTINUITIES AND THE RELATIVE

CONVERGENCE PROBLEM

Consider the cascading of two ~-furcated junctions, as

shown in Fig. 1. Let junction J~ separate guides 1 and 2,

whereas junction JR separates guides 2 and 3. Let us also

assume that P modes are retained in both guides 1 and 3,

and Q modes in guide 2 (the N-furcated guide). This

cascaded discontinuity can be treated by processing either

the individual scattering matrices or the individual trans-

mission matrices. The first approach does not require the

use of an equal number of modes. The second one is

faster; it does, however, require, as stated in [5], the same

number of modes (i.e., P must be equal to Q).

If the scattering and transmission matrices of junctions

JF(J~) are, respectively, denoted by SF (S~) and TF (T~),

the overall scattering and transmission matrices Sc, Tc of

the cascaded discontinuity can be written as

0018-9480/86/1200-1490$01.00 01986 IEEE
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where

S$l = S: +S:zL-S}(I– L- SfiL-S; )-lL-S;

(1)

S:= S&(I–L-S&L- S&)-lL-Sfl (2)

Sf3=Sfi(I-L-S&L- S~)-lL-S& (3)

S; =S& +SflL-S&(I-L-SfiL- S~)-lL-S&

(4)

: 3=[::]=[:+:-1[: :] (,)

I
L;()__()

O L; —— O
L+= — — — — —

— — — — —

00——L;

(6)

In (l)–(4), I is the identity matrix and L:, i = 1,2, 0.., N,

are diagonal matrices whose diagonal elements are given
by Ll:nn = ~ *JB,”T, ~zn being the propagation constant of

the n th mode in the ith guide of the N-furcated section.

Equations (l)–(5) are written in a general form; they can

be further simplified as in the symrhetric case of Fig. 1.

With P = Q,’ the numerical results reveal that both ap-

proaches fail to provide the correct solution as the septa

thickness T gets smaller. This can be shown by plotting the

magnitude of the tangential field at the junction. In Fig. 2,

we choose a 4- furcated cascaded discontinuity as an exam-

ple, and we plot the magnitude of Ex for different values

of T/L with two ratios of mode numbers: P/Q= 1 and

P/Q = R, where R refers to the correct ratio [1]. It can be

observed that for small values of T/L, using P/Q= 1

violates not only the edge condition but also the boundary

condition on the surface of the conducting septa.

We also consider the case of an inductive strip mounted

in the E-plane ‘of rectangular waveguide, which is the basic

building block in the design of E-plane filters. The numeri-

cal results of the TEIO mode reflection and transmission

coefficients are shown in Table I. It is noted that the effect

of the ratio P/Q becomes considerable as T/L gets smaller,

and with P/Q = 1 the formulation completely collapses in

the case of infinitely thin septa. This case has been

mathematically investigated, and it is readily shown that

regardless of the matrix size the formulation always col-

lapses as long as P/Q =1.

In Fig. 3 we show the absolute convergence of the

magnitude of the transmission coefficient S~3 for T/L=

10-1 and T/L= 10-5 with different ratios of P/Q. Due to

symmetry, a magnetic wall can be placed at the enter of

the septa along the z-axis, and we only need to consider

one-half of the structure. P and Q in this figure represent,

the number of modes retained in the large and small

guides of the reduced structure, respectively. It is noted

that the convergence rate is almost unaffected by the ratio

r Tb
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Fig. 2. Ftelative convergence problem demonstrated by field plots;

LI = Lz = L3 = ..54= 0.2L, WI= Wq = 0.05L, Wz =0.lL, R = L/(I,l +

L2 i- L3 +Ld), Q= NI+N2+N3+N4, N1/Ll=N2/L2=N3/L3=

N4/L4.

TABLE I
THEDOMINANTMODEREFLECTIONANDTRANSMISSION

COEFFICIENTSFORDIFFERENTVALUESOFT/L

Reflection Coefficient Transmission Coefficient
~ I ,6 r

A--L---~-096671+)022400 -0.96653+, 022460 0.02792+, 012050

:B41aiiiia
-092170 +, 026$36 -0s,73 s+, O 2757e 007829 +j 026791 0082~5 + j 027.32

-092012+, 027112 -090437+, 029410 007980+J 027110 009564+, 029408

-Q92011 +j 027114 000000 + 1000000 0.073E9+]OZIM

L = 7.:112 mm, w=l.25 mm, ~= 26 GHz, and R =1.25.
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Fig. 3. Convergence of the magnitude of the transmission coefficient as a function of P with P/Q as parameters and for
two cases T/L =10- 1, 7’/L = 10- 5; dimensions according to Table I. 1.

P/Q for T/L =10 -1, whereas in the case of T/L =10-5 it

is very slow when P/Q =1.

III. MATRIX REPRESENTATION OF WAVEGUIDE

JUNCTIONS

Refer to the junction JF shown in Fig. 4. With P modes

retained in guide 1 and Q modes in guide 2, applying the

conservation of complex power technique CCPT [3] yieldsl

(A++d-)=HF(l++~. ) (7)

(4+-4 .)%(4++4-)=( B--E+)%(B++L)
(8)

where H ~ is the E-field mode-matching matrix, and P1

and Pz are diagonal matrices whose diagonal elements are

the powers carried by unit amplitude modes in guides 1

and 2, respectively. ~ and ~ are, respectively, the E-field

mode amplitude vectors in guides 1 and 2. This junction

can be represented either by the scattering matrix or by the

transmission matrix. The parameters of the scattering and

transmission matrices are related to the amplitude vectors

~ and @ according to

(9)

(lo)

In view of [3], the scattering parameters can be written as

SL = (Pj+H}P~H,)-’(Pj –HJP~H,) (11)

S&= H,(I+S~) (12)

S&= 2(PJ +H}P~HF)-lH~P~ (13)

S:= HFS; –I (14)

1The following notations are used: ~ denotes Hermitian transpose, afl
vectors are printed with underbar, and all matrices are printed m bold-
face.

JF

Fig. 4. Junction of two waveguides.

@<
\
L

JF JR

Fig. 5. A cascaded wavegnide discontinuity.

where the dimensions of the matrices H ~, PI, Pz, ST1, f3~z,

S~, and S~ are, respectively, (P x Q), (P x P), (Q X Q),

(Px P), (Px Q), (Qx P), and (Q XQ).

With P = Q, the parameters of the transmission matrix

can be determined either by manipulating the basic CCPT

equations (7), (8) in a similar fashion to what has been

demonstrated in [3], or by simply substituting (11)-(14)

into the following S-to-T transformation equations:

Tll = [S21]-1 (15)

T21 = SII[S21]-1 (16)

T12 = – [S21] ‘%22 (17)

T22 = –S11[S21]-%22 +S12. (18)

Following either methods yields

Tfl=T’~=:[%+m’llml (19)

Equations (19) and (20) are similar in form to those

derived in [5] using a different mode-matching method.
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Fig. 6. Normalized cutoff wavelength AC/a of the dominant TE mode and the first higher order mode; b/a= 0.5,

s/a = 0.125. (a) d/b= 0.25, h/b= 0.375. (b) d/b= 0.5, h/b= 0.25.

IV. MODIFIED FORMULATION

Consider the cascaded waveguide discontinuity shown in

Fig. 5. It is evident that the CPU time can be considerably

reduced if this cascaded discontinuity is treated by the

transmission matrix rather than the scattering matrix.

However, the transmission matrix formulation which is

derived in Section 111 assuming P = Q has the following

drawbacks.

1) As has been shown in Section II, using the same

number of modes may lead to incorrect numerical solu-

tions when the distance between the two junctions is

relatively small.

2) There is unnecessarily large computational effort,

especially when the distance T is relatively large. Although

we may need a large number of modes to correctly de-

scribe junctions J~ and JR, only a few modes are usually

required in t~s case to correctly include the coupling

between the two junctions. Thus, using more modes in

guide 2 does not significantly contribute to the numerical

solution but increases the CPU time required to evaluate

the overall transmission matrix.

The idea of the modified formulation stems from the

observation about the generalized scattering matrix analy-

sis described by (l)–(4): that the parameters of the first Q

F s;, SRmodes of Sc will be unchanged If S~l, S~2, S21, 22,
S&, Sfi, and Sfi on the right-hand side of (l)-(4) are

replaced, respectively, by f$rlQ, ‘f2Q J sgQ, s~Q, s~Q,

S;Q, S$Q, and S&Q. The matrices in the latter set are
square matrices of order (Q X Q) obtained by partitioning
the corresponding matrices in the former set.

In view of this observation, the modified elements of the

transmission matrix are obtained by first partitioning the

matrices given in (11)–(14) to get another set of square

matrices sflQ! S~2Q, ‘~lQ> and S~Q of order (Q x Q);
these partitioned matrices are then substituted into

(15)-(118). After some manipulations, we get

Tfl=~[plQ1-’[@Ql-l

Tfi=Tfl- [PJQI-’[HLQ
T;= HFQ– T&

T;= HFQ– T;.

H}p~HF+p~] (21)

- lp~ (22)

(23)

(24)

By renaming the subscripts of the scattering parameters in

(11)-(114) and following the same procedures, the parame-

ters of T R can be written as

Ef$ = ~[pj] “[PJ+H}PJHJ [HRQ]’1 (’2$

(26)

(27)

TJ=[HRQ]-l-T~. (28)

H HRQ, PIQ,FQ, and P3Q are square matrices of order
(Q X Q) and are obtained by partitioning, respectively, the

matrices H ~, H R, PI, and P3. The overall transmission

matrix T= can then be evaluated by using simple matrix

multiplications according to (5). It is interesting to note

that in the case of symmetry H R = HF, P3 = PI and we

only need to invert one frequency-independent matrix H ~Q
since matrices PIQ and P2 are diagonal matrices..

Applying the scattering matrix analysis with P, Q, and
K modes in guides 1, 2, and 3, respectively, yields an

overall scattering matrix S c with matrices of S~l, S~3, Sfl,

and Sj~ whose dimensions are, respectively, (P X P), (P X

K), (K X P), and (K X K). If these matrices are parti-

tioned to get another set of square matrices S~Q, S~3Q,

S~Q, i~nd S~~, the resulting scattering matrix relates Q
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mode.

modes in guide 1 to Q modes in guide 3. It is important to

note that there is a one-to-one corres~ondence between the

two Sets (S~IQj S?3Q, S$lQ, S;Q), (~fi, Tfi, ~fi, T$); i.%

one set can be obtained from the other by S-to-T or T-to-S

transformation. It should also be mentioned that limiting

the overall scattering matrix or the overall transmission

matrix to only Q modes where Q < P, K does not mean

that we lose any important information since P, Q, and K

can be chosen as large as we need.

In order to check the numerical accuracy of this formu-

lation, we consider the double-ridged waveguide shown in

Fig. 6. In view of the proposed formulation and by simple

matrix multiplications, the overall transmission matrix de-

fined at the conducting terminal planes can be easily

determined. Applying then the transverse resonance tech-

nique yields the eigenvalue equation which can be solved

for the cutoff frequencies. Fig. 6 shows A ,/a for the TE

dominant and the first higher order mode. It is noted that

our results are in good agreement with those given in [6].

In Fig. 7, we compare our results for the cutoff frequen-

cies of unilateral finlines with those obtained using the

spectral-domain technique [7] and the TLM method [8].
Results agree within 1 percent when the size of the eigen-

value matrix is chosen to be (4X 4). It is interesting to note

that in this example the fins are assumed to have a zero

metallization thickness; this further emphasizes’ that our

formulation can be applied even in the case of infinitely

thin septa.

Although in this contribution we consider only two

examples to demonstrate how fast and accurate numerical

solutions can be provided by the proposed formulation, its

simplicity in computing the dispersion characteristics of

more complex waveguiding structures will be shown

elsewhere [9].
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Fig. 8. Three configurations of metal-insert E-plane filters.

V. APPLICATION TO METAL-INSERT E-PLANE

FILTERS

E-plane filters in the form of metal inserts mounted in

the E-plane of a rectangular waveguide have been widely

used as low-cost, mass-producible circuits in millimeter-

wave applications. Fig. 8 shows three configurations of

metal-insert ,?plane filters. These three filter configura-
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tions have been separately analyzed in the literature

[10] -[14]; in most cases the analysis starts with a modal

matching method to determine the scattering matrix of the

waveguide junction formed by the semi-infinite septa; then

the generalized scattering matrix analysis is used re-

peatedly to find the overall scattering matrix of the filter.

In view “of the N-furcated cascaded waveguide discon-

tinuity shown in Fig. 1, one could consider the filter

configurations shown in Fig. 8(a)–(c) as, respectively, 2-

furcated, 3-furcated, and 4-furcated junctions connected in

cascade. Because there is no structural variation in the y

direction, only TEHO modes will be excited in the case of

TEIO incident mode. Thus, (11)–(14), which have been

derived by the authors in [3] for scattering at an N-fur-

cated junction, can be used with (l)–(4) to provide a

unified treatment for metal-insert E-plane filters.

In the design of E-plane filters, a CAD algorithm based

on an accurate analysis is used to tune the filter for a

prescribed frequency response. Because of the CPU time

required in the optimization process, the cost of generating

acceptable design parameters is often prohibitively large.

A considerable reduction in CPU time can be achieved if

the filter sections are cascaded within the scheme of the

transmission matrices rather than the scattering matrices.

However, this method cannot be applied directly because

of the problem of the numerical instability which may

arise when many matrix multiplications are performed on

matrices containing very large numbers. This problem has

been discussed in [5] and an approach has been suggested

to circumvent it.

We present here a more efficient approach to alleviate

this problem. The advantage of this approach over that

suggested in [5] is that it completely avoids using the

generalized scattering matrix analysis where the larger

computational effort is involved.

Let the parameters of the transmission matrix be written

as
~z+ = T1l~l+ + T1#_ (29)

/42. = T21z41+ +T22&. (30)

If Al+ and ~1 _ are related according to

~l_ = [L- SIJL.- ]~1+ (31)

it can be shown that

& = S(2)A—2+

S(2) = [T21 +T2,[L-S(l)L- ]] [Tll +T12[L-S(l)L- ]] ‘l.

(32)

In the case of longitudinally symmetric structures such

as E-plane filters, we only need to analyze half of the

structure with electric and magnetic wall terminations.

Thus, we first collect the discontinuities in the reduced

structure (half the originrd one) into groups 1,2, . . . . k

separated by uniform line sections, as shown in Fig. 9.

Within each group the .discontinuities are cascaded by
simple matrix multiplications of transmission matrices. We

next terminate the reduced structure by magnetic and

electric walls, which can be achieved by setting S:) = I

1495

group

I ; _=, _-= , _ ,

. h G ,fi= * .Gh-———-———
K 3 2 1

T
[id

T
(31

T
(2) (11

.- —— ---— T

Fig. 9. Collecting cascaded discontinuities into groups s$parated by

uniform line sections.

and S$l) = – I. Substituting in (32) gives Sfi) and SJ2).

[L; S#J’Lj ] and [L; S$2)L~ ] represent then the termina-

tions seen at th~ output port of group 2 when the reduced

structure is terminated, respectively, by magnetic and elec-

tric walk. The matrices L,:, i =1,2, . . . . k, are diagond

matrices with diagonal elements Ljn = e ‘J~HII, where 1, for
i=~,2, . . . , k are the lengths of the uniform line sections

separating the groups shown in Fig. 9. Back substitution of

S(2) and Sj2) into (32) gives S:) and SJ3), and the proce-

d&-e is repeated until we get S~~+ 1, and Sjk+ l). This can

be mathematically expressed as

S:) = I

s~l) = _ I

-1]S(2) = [T# + T# [L; S:)Ll ,m

“[
T#) + T# [L; S:)L~

Sj2) = T\{) +T$) [Li_&’)Li

~]-1

[ 1]
s[Tfi)+T# [L~s$)L: ] ]‘1

S:) = [Tjf) + T#) [L; S:)L~ 1]

o[Tf?) +T# [L; S:)LI ] I ‘1

-1]S(3) = [T~~) + T# [L; S$2)L2e

. [Ti;) +T{;) [L; S~)L~ ] ] ‘1

s$k+’)= [T$f) +T#) [LI S#)L~ ] ]

o[Tff) +Tf? [L;SAk)L~ ] ]‘1

SyC+V = [TJ~) +TJ:) [LIf3:’)L~ ] ]

. [Tff) +T& [L; S$~)L~ ] ] ‘-l.

The overall scattering parameters of the filter, S1l, Slz,

S21, and S22 are then given by

S1l = S22 = : [S$k+l) +Sjk+Q] (33)
[

S12=s21= ;[sf+l) –Sy+l)]. (34)

If the discontinuities in the filter are collected into

groups, as shown in Fig. 10, the transmission matrix of

each group can be calculated without any numerical prob-
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Fig. 10. Collecting cascaded discontinuities in the reduced structure

(half the original filter structure) into groups.

TABLE II
THE NUMBER OF FREQUENCY-DEPENDENT MATRIX INVERSIONS

REQUIRED BY THE PROPOSED APPROACH AND BY THE

CONVENTIONAL APPROACH

Number of Resonators The PrOpo.ed Approach The Conventional Apprma~h

~ (O@ ( n+l ) :(n+l)

357, , ... . ..

n (even) ( n+2 ) (;n+z)

2,4,6 ... . ..

TABLE III
THE DIMENSIONS OF THE FILTERS SHOWN IN FIGS. 11, 12, 13, AND 14

+~+

---

[w ; c $z g ,;//,x

,. _——

b $ -

————-—

JL IN I-k.l k-l
Wavegulde Number of lasert 11 12 13 14 15 16 17 18

dimensions resonators thickness lN
Figure

lN-, lN-2 lN-3 [N_4 iN_~ [N-6 lN-7

Ka-baad

a=7.112 3 1.250 0.7721 3.9527 3.4254 3.9593

b=3.556
Flg.( 11)

W-band
a=2.54 4 0.050 0.5990 1.4390 1.8110 1.4400 2.0080
b=l.27

Flg (12)

Ka-band
a=7.112 7 0.025 0.1081 4.8556 0.6668 5.0978 0.9718 5.1369 1.0510 5.1427 Fig.( 13)
6=3.556

Ka-band
a=7.112 7 0.025 0.1541 3.2116 0.7753 3.2314 1.1652 3.2196 1.2802 3.2171 F1g.(14)
b=3.556

N = 2 n +1, where n is the number of resonators. All dimensions are in millimeters.

lems. Table II shows the number of frequency-dependent

matrix inversions required in computing the overall

scattering matrix of the filter by this approach and by the

conventional approach used in [10]–[14], where the dis-

continuities are cascaded within the scheme of scattering
matrices. It is noted that the computation effort is consid-

erably reduced by applying the proposed approach; for

example, in the case of a filter of n = 7, where n is the

number of resonators, the conventional approach requires

12 frequency-dependent matrix inversions whereas the

proposed approach requires only eight frequency-depen-

dent matrix inversions in addition to the one matrix inver-

sion required in inverting the frequency-independent ma-

trix H ~Q. Moreover, in view of the number of matrix

multiplications involved in (l)–(4), it can be readily con-

cluded that the proposed approach also requires a smaller

number of matrix multiplications. This comparison indi-

cates the efficiency of our approach, especially when it is

used in the computer-aided design of E-plane filters, where

the filter analysis has to be repeated many times at differ-

ent frequencies.

To verify the reliability of this method, we consider
filters of three, four, and seven resonators with dimensions

as shown in Table III, and we compare our calculated

results with those obtained using the conventional ap-

proach [10] -[14]. The comparison is given in Figs. 11-13,

where it is noted that there is good agreement in all cases.

The results shown in these figures are calculated based on

the scheme described in Fig. 10 using 12 modes to include

the higher order mode coupling between the inductive

septa.

For filters of wide bandwidths, the lengths of the induc-

tive septa are relatively short and one can achieve further

reduction in computation time without having any numeri-
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Fig. 11. Comparison of insertion loss results calculated by this method
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cal problems by combining two successive groups into one

group. For example, in Fig. 14 we show the results calcu-

lated for a filter of n = 7 with a relatively wide bandwidth

by collecting the cascaded discontinuities into two groups

rather than four groups. Evaluation of the overall scatter-

ing matrix of the filter in this case req&es only four

frequency-dependent matrix inversions in addition to the

frequency-independent matrix inversion required to invert

H FQ .

Another possible application of this approach is in the

design of optimized multisection transformers. In this case,

we terminate the structure by a matched load, i.e., we set

S(l) = O where O is the null matrix; the reflection coeffi-

cient at the transform& input can then be obtained by

repeatedly using (32) until we get S(~ + l).

VI. CONCLUSIONS

It has been shown that even with the use of large

numbers of modes, the relative convergence problem may

seriously affect the modal analysis solution when we deal

with discontinuities in cascade. The efficiency of the mod-

ified transmission matrix formulation presented here has

been confirmed by comparing our numerical results for

double-ridged waveguides and finlines with other pub-

lished results. Moreover, a simple and unified approach

has been introduced to analyze metal-insert E-plane filters.

This is an improvement over the conventional approach

used in the literature in that it provides accurate results

with a considerable reduction in computation time.
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