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An Improved Transmission Matrix
Formulation of Cascaded Discontinuities
and its Application to E-Plane Circuits

RAAFAT R. MANSOUR, STUDENT MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract —We study the effect of the relative convergence problem on
the transmission matrix formulation of cascaded discontinuities. A numeri-
cally efficient modified formulation satisfying the edge condition is pre-
sented. Application is in the analysis of waveguiding structures in which a
number of conductors are placed on various interfaces. Numerical results
are presented for double-ridged waveguides and finlines. Applications to
E -plane filters are also discussed.

I. INTRODUCTION

HE MODAL ANALYSIS TECHNIQUE has been

frequently used in solving waveguide junction scatter-
ing problems. The technique provides a formally exact
solution with matrices of infinite size which must be
truncated for numerical computation. It has been shown,
however, in [1] that improper choice of the ratio between
the number of modal terms retained in the guides forming
the junction may lead to violation of the edge condition,
which in turn leads to the relative convergence problem.
On the other hand, convergence of the modal analysis
solutions of some waveguide discontinuities has been
studied in [2]-[4], where it is shown that as long as the
number of modes used is large, the relative convergence
problem does not affect the numerical solution signifi-
cantly.

In this paper, we will show that the situation is different
when we deal with discontinuities in cascade; the effect of
the relative convergence on the numerical solution is
noticeable and can be considered critical in some cases.

In a recent publication [5], it has been demonstrated
that the transmission matrix representation of waveguide
discontinuities is superior to the scattering matrix repre-
sentation as far as the CPU time is concerned. It has,
however, been stated that the transmission matrix formula-
tion requires an equal number of modes to be retained in
any of the guides forming the discontinuity. For some
waveguide discontinuities, this requirement may violate the
edge condition, resulting in incorrect numerical solutions.

We present a modified transmission matrix formulation
with which the relative convergence problem can be
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Fig. 1. An N-furcated cascaded waveguide discontinuity.
avoided. This formulation is quite general and has a wide
range of applications. To illustrate its applicability and to
establish the accuracy of the numerical solution, which is
the main emphasis in this paper, this formulation is em-
ployed with a transverse resonance concept to provide
accurate and numerically efficient solutions for the propa-
gation characteristics of double-ridged waveguides and
finlines. We also show how this formulation can be adopted
to provide an efficient analysis for metal-insert E-plane
filters.

II. CASCADED DISCONTINUITIES AND THE RELATIVE
CONVERGENCE PROBLEM

Consider the cascading. of two N-furcated junctions, as
shown in Fig. 1. Let junction J. separate guides 1 and 2,
whereas junction J; separates guides 2 and 3. Let us also
assume that P modes are retained in both guides 1 and 3,
and Q modes in guide 2 (the N-furcated guide). This
cascaded discontinuity can be treated by processing either
the individual scattering matrices or the individual trans-
mission matrices. The first approach does not require the
use of an equal number of modes. The second one is
faster; it does, however, require, as stated in [5], the same
number of modes (i.e., P must be equal to Q).

If the scattering and transmission matrices of junctions
J-(JR) are, respectively, denoted by S¥ (S¥) and TF (TF®),
the overall scattering and transmission matrices S¢, T¢ of
the cascaded discontinuity can be written as

C C C
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where
SG=Sf+SLL-SE(I-L"SLL-SR) 'L-Sf
(1)
SG=SR(I-L"SLL"SR) 'L~ 87 )
SG=ShH(I-L-SEL-S) 'L-S% (3)
SG =SE +SEL-SL(I-L SEL™S5) 'L-SE
(4)
TR TS| _|Th TS =[L+ o]T{% TS )
TS Ts| |TS TS 0 LTS T
L 0 — — o
0 L — — 0
Le=| _ 2 _ (6)
0 0 — — L

-

In (1)—(4), Lis the identity matrix and L*,i=1,2,--- N,
are diagonal matrices whose diagonal elements are given
by LE  =e*/#.T B  being the propagation constant of
the nth mode in the ith guide of the N-furcated section.
Equations (1)—(5) are written in a general form; they can
be further simplified as in the symmetric case of Fig. 1.

With P =Q, the numerical results reveal that both ap-
proaches fail to provide the correct solution as the septa
thickness 7" gets smaller. This can be shown by plotting the
magnitude of the tangential field at the junction. In Fig. 2,
we choose a 4-furcated cascaded discontinuity as an exam-
ple, and we plot the magnitude of E_ for different values
of T/L with two ratios of mode numbers: P/Q =1 and
P/Q = R, where R refers to the correct ratio [1]. It can be
observed that for small values of 7/L, using P/Q =1
violates not only the edge condition but also the boundary
condition on the surface of the conducting septa.

We also consider the case of an inductive strip mounted
in the E-plane of rectangular waveguide, which is the basic
building block in the design of E-plane filters. The numeri-
cal results of the TE,, mode reflection and transmission
coefficients are shown in Table 1. Tt is noted that the effect
of the ratio P/Q becomes considerable as T/L gets smaller,
and with P/Q =1 the formulation completely collapses in
the case of infinitely thin septa. This case has been
mathematically investigated, and it is readily shown that
regardless of the matrix size the formulation always col-
lapses as long as P/Q =1.

In Fig. 3 we show the absolute convergence of the
magnitude of the transmission coefficient SG for 7/L =
107" and T/L =107 with different ratios of P/Q. Due to
symmetry, a magnetic wall can be placed at the enter of
the septa along the z-axis, and we only need to consider

one-half of the structure. P and Q in this figure represent

the number of modes retained in the large and small
guides of the reduced structure, respectively. It is noted
that the convergence rate is almost unaffected by the ratio
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Fig. 2. Relative convergence problem demonstrated by field plots;
Li=L,=Ly=L,=02L, Wy,=W;=005L, W,=01L, R=L/(L, +
Lyt Ly+ L), Q=N+N+N+ N, N/Li=N,/Ly=N,/Ly=
N,/Ly.

TABLEI
THE DOMINANT MODE REFLECTION AND TRANSMISSION
COEFFICIENTS FOR DIFFERENT VALUES OF T/ L

[P
2
7
Reflection Coefficient Transmission Coefficient
T
L P P P p
=R o= LR PRy
Q Q Q Q
107 -096671+)022400 |-0.96653+) 022460 |{002792+, 012050 |002807+ ] 012079
10-3 -0 92170 + 0 269236 1-091755+ 0 27578 © 07829 +j 026701 008245 + j 0 27432
107 |-092012+;027112 |-090437+)029410 |0 07988+ 027110 [009564 +) 029408
00 -0.9201f +j0 27114 {000000 + j000000|[0.07989+;02714 | LOO0OO +; 0.00000

L=17112 mm, W =1.25 mm, f=26 GHz, and R=1.25.
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Convergence of the magnitude of the transmission coefficient as a function of P with P/Q as parameters and for

two cases T/L =101, T/L =1077; dimensions according to Table I. 8

P/Q for T/L =107}, whereas in the case of T/L =107 it
is very slow when P/Q =1.

III. MATRIX REPRESENTATION OF WAVEGUIDE

JUNCTIONS

Refer to the junction J, shown in Fig. 4. With P modes
retained in guide 1 and @ modes in guide 2, applying the
conservation of complex power technique CCPT [3] yields!

(1_4++4—)=HF(_B++Ef) (7)
(4,—4_)'P(4,+4_)=(B_-B.)'P,(B,+B.)
(8)

where H is the E-field mode-matching matrix, and P;
and P, are diagonal matrices whose diagonal elements are
the powers carried by unit amplitude modes in guides 1
and 2, respectively. 4 and B are, respectively, the E-field
mode amplitude vectors in guides 1 and 2. This junction
can be represented either by the scattering matrix or by the
transmission matrix. The parameters of the scattering and
transmission matrices are related to the amplitude vectors

A and B according to
a_]_[sh sh|[4.
[_1_3_ ] - [s{l SJZHEJ
F F

R
In view of [3], the scattering parameters can be written as
(11)
(12)
(13)
(14)

©)

S5, = (P{ +HLP[H,)  (P{~HLPH,)
fz = HF(I + S{2)
-1
Sn=2(P]+H{P[H;) HP
Sii=HgSf -1
1 The following notations are used: | denotes Hermitian transpose, all

vectors are printed with underbar, and all matrices are printed m bold-
face.

Fig. 5. A cascaded waveguide discontinuity.

where the dimensions of the matrices H, P, P,, Sf, ST,
SI, and S%, are, respectively, (P X Q), (P X P), (Q X Q),
(P X P),(PXQ),(@XP),and (Q XQ).

With P = (Q, the parameters of the transmission matrix
can be determined either by manipulating the basic CCPT
equations (7), (8) in a similar fashion to what has been
demonstrated in [3], or by simply substituting (11)-(14)
into the following S-to-T transformation equations:

T, = [S21] - (15)
Ty = Su[Sm]_l (16)
Tp=- [Sz1] _1522 (17)

Ty = _Su[S21]_1szz+Su- (18)

Following either methods yields

(19)

(20)

1
T - T = S [H, + [m1ey] Py
T/ =5 = T4 - [H{P{] B,

Equations (19) and (20) are similar in form to those
derived in {5] using a different mode-matching method.
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Fig. 6. Normalized cutoff wavelength A, /a of the dominant TE mode and the first higher order mode; b/a=0.5,
s/a=0.125.(a) d/b=025, h/b=0375.(b) d/b=0.5, h /b= 0.25.

1V. MODIFIED FORMULATION

Consider the cascaded waveguide discontinuity shown in
Fig. 5. It is evident that the CPU time can be considerably
reduced if this cascaded discontinuity is treated by the
transmission matrix rather than the scattering matrix.
However, the transmission matrix formulation which is
derived in Section III assuming P =@ has the following
drawbacks.

1) As has been shown in Section II, using the same
number of modes may lead to incorrect numerical solu-
tions when the distance between the two junctions is
relatively small.

2) There is unnecessarily large computational effort,
especially when the distance T is relatively large. Although
we may need a large number of modes to correctly de-
scribe junctions J. and Jg, only a few modes are usually
required in this case to correctly include the coupling
between the two junctions. Thus, using more modes in
guide 2 does not significantly contribute to the numerical
solution but increases the CPU time required to evaluate
the overall transmission matrix.

The idea of the modified formulation stems from the
observation about the generalized scattering matrix analy-
sis described by (1)—(4): that the parameters of the first Q
modes of S€ will be unchanged if S§;, Sf,, S§, S%, SX,
SX, S&, and S& on the right-hand s1de of (1) (4) are
replaced, respectively, by SUQ, SuQ, 21Q, Szzga Szzga
S&o» S&p, and S§,. The matrices in the latter set are
square matrices of order (Q X Q) obtained by partitioning
the corresponding matrices in the former set.

In view of this observation, the modified elements of the
transmission matrix are obtained by first partitioning the
matrices given in (11)-(14) to get another set of square
matrices Sfi,, Shhy, Sip, and S5, of order (Q X Q);
these partitioned matrices are then substituted into

(15)—(18). After some manipulations, we get

[PIQ] '[Hip] [HIPIH-+P]]  (21)

- -1

TS =Tf;, - [P, [H;Q] Pj (22)
Tz’i = HFQ —TIFI (23)
TS =H, - Th. (24)

By renaming the subscripts of the scattering parameters in
(11)—(14) and following the same procedures, the parame-
ters of TR can be written as

1 _ -
T =5 [P [P+ HEPIH | [He ] (25)

TR = TX — [P}] "'H}oPl, (26)
Ty = [HRQ] B _ng (27)
TS = [Hgo] - TE. (28)

Hpy, Hgg, Py, and P;, are square matrices of order
(Q X Q) and are obtained by partitioning, respectively, the
matrices Hy, Hy, P;, and P;. The overall transmission
matrix TC can then be evaluated by using simple matrix
multiplications according to (5). It is interesting to note
that in the case of symmetry Hy=H,, P,=P, and we
only need to invert one frequency-independent matrix H g,
since matrices P,, and P, are diagonal matrices..
Applying the scattering matrix analysis with P, Q, and
K modes in guides 1, 2, and 3, respectively, yields an
overall scattermg matrix SC with matrices of SG, SG, S§,
and S§; whose dimensions are, respectively, (P X P), (P X
K), (K X P), and (K X K). If these matrices are parti-
tioned to get another set of square matrices S, S5y,
S31Q, and S33Q, the resulting scattering matrix relates Q
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Fig. 7. Normalized cutoff frequencies b/A_ in unilateral finlines; b/a = 0.5, ¢, = 2.2. (a) Dominant mode. (b) Second-order
mode.

modes in guide 1 to Q modes in guide 3. It is important to
note that there is a one-to-one correspondence between the
two sets (S0, Sfgs Ssig» S5o)s (T, TS, Tsp, T); ie.,
one set can be obtained from the other by S-to-T or T-to-S
transformation. It should also be mentioned that limiting
the overall scattering matrix or the overall transmission
matrix to only Q¢ modes where Q < P, K does not mean
that we lose any important information since P, Q, and K
can be chosen as large as we need.

In order to check the numerical accuracy of this formu-
lation, we consider the double-ridged waveguide shown in
Fig. 6. In view of the proposed formulation and by simple
matrix multiplications, the overall transmission matrix de-
fined at the conducting terminal planes can be easily
determined. Applying then the transverse resonance tech-
nique yields the eigenvalue equation which can be solved
for the cutoff frequencies. Fig. 6 shows A_/a for the TE
dominant and the first higher order mode. It is noted that
our results are in good agreement with those given in [6].

In Fig. 7, we compare our results for the cutoff frequen-
cies of unilateral finlines with those obtained using the
" spectral-domain technique [7] and the TLM method [8].
Results agree within 1 percent when the size of the eigen-
value matrix is chosen to be (4 X 4). It is interesting to note
that in this example the fins are assumed to have a zero
metallization thickness; this further emphasizes that our
formulation can be applied even in the case of infinitely
thin septa.

Although in this contribution we consider only two
examples to demonstrate how fast and accurate numerical
solutions can be provided by the proposed formulation, its
simplicity in computing the dispersion characteristics of
more complex waveguiding structures will be shown
elsewhere [9].
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Fig. 8. Three configurations of metal-insert E-plane filters.

V. APPLICATION TO METAL-INSERT E -PLANE
FILTERS

E-plane filters in the form of metal inserts mounted in
the E-plane of a rectangular waveguide have been widely
used as low-cost, mass-producible circuits in millimeter-
wave applications. Fig. 8 shows three configurations of
metal-insert E-plane filters. These three filter configura-
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tions have been separately analyzed in the literature
[10]-[14]; in most cases the analysis starts with a modal
matching method to determine the scattering matrix of the
waveguide junction formed by the semi-infinite septa; then
the generalized scattering matrix analysis is used re-
peatedly to find the overall scattering matrix of the filter.

In view of the N-furcated cascaded waveguide discon-
tinuity shown in Fig. 1, one could consider the filter
configurations shown in Fig. 8(a)-(c) as, respectively, 2-
furcated, 3-furcated, and 4-furcated junctions connected in
cascade. Because there is no structural variation in the y
direction, only TE,, modes will be excited in the case of
TE,, incident mode. Thus, (11)—(14), which have been
derived by the authors in [3] for scattering at an N-fur-
cated junction, can be used with (1)-(4) to provide a
unified treatment for metal-insert E-plane filters.

In the design of E-plane filters, a CAD algorithm based
on an accurate analysis is used to tune the filter for a
prescribed frequency response. Because of the CPU time
required in the optimization process, the cost of generating
acceptable design parameters is often prohibitively large.
A considerable reduction in CPU time can be achieved if
the filter sections are cascaded within the scheme of the
transmission matrices rather than the scattering matrices.
However, this method cannot be applied directly because
of the problem of the numerical instability which may
arise when many matrix multiplications are performed on

matrices containing very large numbers. This problem has

been discussed in [S] and an approach has been suggested
to circumvent it.

We present here a more efficient approach to alleviate
this problem. The advantage of this approach over that
suggested in [S} is that it completely avoids using the
generalized scattering matrix analysis where the larger
computational effort is involved.

Let the parameters of the transmission matrix be written

(29)
(30)

as
Ay =Tyd,, +Tp4,

Ay =Tyd +Tpd, .
If 4,, and A4,_ are related according to
4, =[L"SOL"]4,,

it can be shown that
4, = SP4,,

(31)

S® = [Ty + Ty [L™SOL™]] [Ty, + Ty, [L-SOL]] 7
(32)

In the case of longitudinally symmetric structures such
as E-plane filters, we only need to analyze half of the
structure with electric and magnetic wall terminations.
Thus, we first collect the discontinuities in the reduced
structure (balf the original one) into groups 1,2,--- .k
separated by uniform line sections, as shown in Fig. 9.
Within each group the discontinuities are cascaded by
simple matrix multiplications of transmission matrices. We
next terminate the reduced structure by magnetic and
electric walls, which can be achieved by setting S{ =1
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Fig. 9. Collecting cascaded discontinuities into groups separated by
uniform line sections.

and S = —1. Substituting in (32) gives S® and S@.
[L; SPL; ] and [L; S®PL; ] represent then the termina-
tions seen at the output port of group 2 when the reduced
structure is terminated, respectively, by magnetic and elec-
tric walls. The matrices L;,i=1,2,---,k, are diagonal
matrices with diagonal elements L;, = e /A, where I, for
i=1,2,---,k are the lengths of the uniform line sections
separating the groups shown in Fig. 9. Back substitution of
S{? and S? into (32) gives SO and 8, and the proce-
dure is repeated until we get S{**Y and S{**. This can
be mathematically expressed as

SO =1

SO =-1

S@ = TP + TP [LrSOL; ] |
AT +T@LrseL]]

8@ = TP + TP L7 SOL; ] |
1@ +1@Lrses]] ™

s® = [T +TP[L; S@L; ||
[ +1@ L seLs ]|

s =19 +T@[L7sOL; ] |

1@ +1Q[L;s0L; 1]

sy = [T + TP L s ]
[rp + 1 Lrser;]] ™

SE+D = [T2<{‘) + TP L SWL, ”
[T+ (L s®L; | |~

The overall scattering parameters of the filter, S,;, S,,,
S,1, and S,, are then given by

1
S1u=8y= 5 [Sr(nk+1) + Se(k+l)]

i

1
S=Sy= 5 [Sr(nk+1) ”‘Sékﬂ)] .

(33)

(34)

If the discontinuities in the filter are collected into
groups, as shown in Fig. 10, the transmission matrix of
each group can be calculated without any numerical prob-
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Vo ————— %Fm% (2222 CONVENTIONAL APPROACH
H 1 [ !
| i i 1 [ L g
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n- odd Sm=1
S( 1) =_1 3
(a) e n {odd) (n+1) 5 (n41}
(K (3) @) (y 3,5,7ueene
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T RIS Y I -
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Fig. 10. Collecting cascaded discontinuities in the reduced structure
(half the original filter structure) into groups.

TABLE III
THE DIMENSIONS OF THE FILTERS SHOWN IN F1Gs. 11, 12, 13, anD 14

1 L te

22

4 ————
‘N
v / . ===
Bl el [
Waveguide |Number of | Insert A iy [ [ [ lg [ lg | Figure
dimensions | resonators {thickness| Iy {Inv_y inv_o | Invoa | Inea | In—s | Incs | Ine7
Ka-band
a=7.112 3 1.250 [0.772113.9527]3.4254|3.9593 Fis-(ll)
5=3.556
W-band
a=2.54 4 0.050 [0.5990|1.439071.8110]1.4400|2.0080 Fig (12)
b=1.27
Ka-band
a=7.112 7 0.025 0.10814.8556)0.6668 [5.09780.97185.1369|1.0510}5.1427 | Fig.(13)
b=3.556
Ka-band
a=7.112 7 0.025 {0.154113.2116]0.7753[3.2314|1.1652|3.2196 |1.2802]3.2171 | Fig.(14)
5=3.556

N =2n+1, where n is the number of resonators. All dimensions are in millimeters.

lems. Table II shows the number of frequency-dependent
matrix inversions required in computing the overall
scattering matrix of the filter by this approach and by the
conventional approach used in [10]-[14], where the dis-
continuities are cascaded within the scheme of scattering
matrices. It is noted that the computation effort is consid-
erably reduced by applying the proposed approach; for
example, in the case of a filter of n="7, where n is the
number of resonators, the conventional approach requires
12 frequency-dependent matrix inversions whereas the
proposed approach requires only eight frequency-depen-
dent matrix inversions in addition to the one matrix inver-
sion required in inverting the frequency-independent ma-
trix Hp,. Moreover, in view of the number of matrix
multiplications involved in (1)—(4), it can be readily con-
cluded that the proposed approach also requires a smaller
number of matrix multiplications. This comparison indi-

cates the efficiency of our approach, especially when it is
used in the computcr-aided design of E-plane filters, where
the filter analysis has to be repeated many times at differ-
ent frequencies.

To verify the reliability of this method, we consider
filters of three, four, and seven resonators with dimensions
as shown in Table III, and we compare our calculated
results with those obtained using the conventional ap-
proach [10]-[14]. The comparison is given in Figs. 11-13,
where it is noted that there is good agreement in all cases.
The results shown in these figures are calculated based on
the scheme described in Fig. 10 using 12 modes to include
the higher order mode coupling between the inductive
septa.

For filters of wide bandwidths, the lengths of the induc-
tive septa are relatively short and one can achieve further
reduction in computation time without having any numeri-
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groups.
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Fig. 13. Comparison of insertion loss results calculated by this method
and by the conventional approach (graphical reproduction from [12]);
data according to Table III; discontinuities are collected into four
groups.
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Fig. 14. Comparison of insertion loss results calculated by this method
and by the conventional approach (graphical reproduction from [12]):
data according to Table III; discontinuities are collected into two
groups.

v

cal problems by combining two successive groups into one
group. For example, in Fig, 14 we show the results calcu-
lated for a filter of n = 7 with a relatively wide bandwidth
by collecting the cascaded discontinuities into two groups
rather than four groups. Evaluation of the overall scatter-
ing matrix of the filter in this case requires only four
frequency-dependent matrix inversions in addition to the
frequency-independent matrix inversion required to invert
Hpp.

Another possible application of this approach is in the
design of optimized multisection transformers. In this case,
we terminate the structure by a matched load, i.e., we set
S® = 0 where 0 is the null matrix; the reflection coeffi-
cient at the transformér input can then be obtained by
repeatedly using (32) until we get S¢+1.

VL

It has been shown that even with the use of large
numbers of modes, the relative convergence problem may
seriously affect the modal analysis solution when we deal
with discontinuities in cascade. The efficiency of the mod-
ified transmission matrix formulation presented here has
been confirmed by comparing our numerical results for
double-ridged waveguides and finlines with other pub-
lished results. Moreover, a simple and unified approach
has been introduced to analyze metal-insert E-plane filters.
This is an improvement over the conventional approach
used in the literature in that it provides accurate results
with a considerable reduction in computation time.

CONCLUSIONS
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